09: Basic Trigonometry

Key Terms

- Domain: the set of possible values of θ; input.
- Fundamental period: the smallest interval over which a periodic function repeats itself.
- Period: any interval over which a function repeats itself.
- Periodic function: a function that repeats itself at regular intervals.
- Quadrant: one of four sections the coordinate plane is divided into by its axes.
- Range: the set of possible values of $f(\theta)$; output.
- Reference angle: given angle θ, the acute angle between the terminal side of θ and the x-axis.
- Right triangle: a geometric figure having three sides and three angles with exactly one angle with a measure of 90°.
- Trigonometric identity: a relation between two or more trigonometric functions.
- Unit circle: a circle of radius one centered at the origin.

Signs of Trigonometric Functions

The quadrant a standard angle lies in tells the sign of the trigonometric function values.

Use the first letters of "All Students Take Calculus" to remember:

- All trigonometric functions are positive in Quadrant I.
- Sine (and cosecant) are positive in Quadrant II.
- Tangent (and cotangent) are positive in Quadrant III.
- Cosine (and secant) are positive in Quadrant IV.

Pythagorean Theorem

The Pythagorean theorem states that the square of the length of the hypotenuse, r, is equal to the sum of the squares of the lengths of the two legs of a right triangle, a and b .

$$
r^{2}=a^{2}+b^{2}
$$

b

Trigonometric Function Ratios

The six trigonometric functions can be defined as ratios of the lengths of the sides of a right triangle.

$$
\begin{array}{ll}
\operatorname{Sin} \theta=\frac{\text { opposite }}{\text { hypotenuse }} & \operatorname{Csc} \theta=\frac{\text { hypotenuse }}{\text { opposite }} \\
\operatorname{Cos} \theta=\frac{\text { adjacent }}{\text { hypotenuse }} & \operatorname{Sec} \theta=\frac{\text { hypotenuse }}{\text { adjacent }} \\
\operatorname{Tan} \theta=\frac{\text { opposite }}{\text { adjacent }} & \operatorname{Cot} \theta=\frac{\text { adjacent }}{\text { opposite }}
\end{array}
$$

Use "SOHCAHTOA" to remember the primary ratios.

Common Angles of Trigonometry

1

1

Angle $\boldsymbol{\theta}$	$\sin \boldsymbol{\theta}$	$\cos \boldsymbol{\theta}$	$\tan \boldsymbol{\theta}$
$30^{\circ}($ or $\pi / 6)$	$1 / 2$	$\sqrt{ } 3 / 2$	$\sqrt{ } 3 / 3$
$45^{\circ}($ or $\pi / 4)$	$\sqrt{ } 2 / 2$	$\sqrt{ } 2 / 2$	1
$65^{\circ}($ or $\pi / 3)$	$\sqrt{ } 3 / 2$	$1 / 2$	$\sqrt{ } 3$

Trigonometric Identities

- Reciprocal Identities

$$
\begin{array}{lll}
\sin \theta=\frac{1}{\csc \theta} & \cos \theta=\frac{1}{\sec \theta} & \tan \theta=\frac{1}{\cot \theta} \\
\csc \theta=\frac{1}{\sin \theta} & \sec \theta=\frac{1}{\cos \theta} & \cot \theta=\frac{1}{\tan \theta}
\end{array}
$$

- Quotient Identities

$$
\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \text { AND } \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
$$

- Pythagorean Identities

$$
\begin{gathered}
\sin ^{2} \theta+\cos ^{2} \theta=1 \quad 1+\tan ^{2} \theta=\sec ^{2} \theta \\
1+\cot ^{2} \theta=\csc ^{2} \theta
\end{gathered}
$$

- Cofunction Identities

$$
\begin{array}{ll}
\sin (90-\theta)=\cos \theta & \csc \left(90^{\circ}-\theta\right)=\sec \theta \\
\cos \left(90^{\circ}-\theta\right)=\sin \theta & \sec \left(90^{\circ}-\theta\right)=\csc \theta \\
\tan \left(90^{\circ}-\theta\right)=\cot \theta & \cot \left(90^{\circ}-\theta\right)=\tan \theta
\end{array}
$$

[^0]
[^0]: on a blank sheet of paper. Review it again before the exam.

