DAT General Chemistry - Core Concept Cheat Sheet

11: Liquids and Solids			
Key Chemistry Terms			Vapor Pressure Equilibrium
 Intramolecular forces: chemical bonds within a molecule. Intermolecular forces (IMF): physical attractions between separate molecules. Dipole: Partial separation of charge. London Dispersion Forces: Temporary dipole due to 			 Initially the liquid particles escape resulting in gas particles, those gas particles can collide with the liquid and re-join it. The rate of gas evaporating remains the same. The rate of gas particles re-joining the liquids increases as more gas particles are made from evaporation. Vapor Pressure equilibrium is established over time.
electrons ganging up on one side of the molecule.			Solid
 Dipole-Dipole Forces: Attractions between opposite charges in two polar molecules. Ion Dipole Forces: Attraction between an ion and the opposite charge on a polar molecule. Hydrogen bonding: Very strong dipole present when an H bonds to an N, O or F. The H can then "hydrogen bond" with the lone pairs on an N, O or F of a different molecule. Vapor Pressure: Pressure caused by particles evaporating from a solid or liquid. Equilibrium: The rate of change is equal to the rate of the opposite change. Amorphous solid: No repeatable structure of components. Crystalline solid: Repeating unit cell of the components. Lattice: Overall structure of crystalline solid. Unit Cell: Repeating unit in lattice. Atomic solids: Atoms are the components of the unit cells. Molecular solids: Molecules are the components of the 			 Properties of solids: Definite shape and volume. Particles are not free to move past one another. Not compressible. Amorphous solid particles are "trapped" in place before they can arrange themselves into a repeating pattern. Three types of crystalline solids: Atomic solids Metallic solids—closest packing of metal atoms. Electrons are in a pool and are free to move throughout. Metwork solids—one giant molecule. Each atom is covalently bonded to surrounding atoms Molecular solids—electrostatic attractions between them Ionic solids—electrostatic attraction between ions. Ions
 Phase change: Matter changes from one state to another. Phase Diagram: Shows the state of matter at various 			are stacked to minimize like-charge repulsions
temperature and pressures.			Phase Changes
 Entralpy of rusion (Hus): Energy needed to break enough intermolecular forces to melt. Enthalpy of vaporization (Hvap): Energy needed to break remaining IMF's to evaporate a liquid. 			Melting/freezing: solid ≒ liquid Boiling/condensing: liquid ≒ gas Sublimation/deposition: solid ≒ gas
Intermolecular Forces			Melting: Requires energy to break some IMF.
IMF Happens	s with	Relative strength	 Boiling: Requires energy to break remaining IMF. Subliming: Requires energy to break all the IMF. Deposition, condensation and freezing: Energy is released as
London All molec Dispersion Forces	ules	Weakest IMF	IMF's formed.
Dipole-Dipole 2 polar n Forces	nolecules	Medium strength	Boiling/Condensation Point: Temperature at which liquid and gas are at equilibrium.
molecule	a polar	Medium strength	Vapor pressure of liquid = atmospheric pressure
Hydrogen H on an Bonding with an N on anoth molecule	N, O or F I, O or F er	Strongest IMF	 Melting/Freezing Point: Temperature at which solid and liquid are at equilibrium. Vapor pressure of solid = Vapor pressure of liquid
London Dispersion Forces are temporary, and therefore weaker. The larger the molecule, the greater the London Dispersion Forces			Substances sublime when the IMF are so weak that all of them are broken at that temperature and pressure.
Liquide			Energy of Phase Changes
Properties of liquids:			Equations for energy change (ΔH) during a phase change:
 Definite volume but not shape. Particles are free to move past one another. Not very compressible. 			Melting: $\Delta H = m \times H_{fus}$
Vapor Pressure			Evaporating: $\Delta I = I h \wedge I I_{vap}$
 Vapor Pressure If a particle on the top surface of the liquid has enough energy, it can escape the intermolecular forces and evaporate—causing vapor pressure As temperature increases, more particles have the necessary energy to evaporate—vapor pressure increases. 			For freezing and condensing , use $-H_{fus}$ and $-H_{vap}$ since energy is released.