Trigonometry - Core Concept Cheat Sheet

10: Graphs of Trigonometric Functions

Key Terms

- Amplitude: one-half of the vertical distance between the maxima and minima of a sine or cosine graph.
- Asymptote: any line that a function approaches closely without ever intersecting.
- Fundamental period: the smallest interval over which a periodic function repeats itself.
- Horizontal translation: a shift to the left or right of the graph of a function.
- Key points: points that can be used to plot the graph of a function.
- Phase shift: the magnitude and direction of a horizontal shift; determined by the ratio $\frac{\mathrm{c}}{\mathrm{b}}$.
- Vertical asymptote: a vertical line that a function approaches closely without ever intersecting.
- Vertical translation: an upward or downward shift in the graph of a function.

Key Formulas

The general forms of the equations for sine, cosine, cosecant, and secant:

- Sine: $y=d+a \sin (b x-c)$
- Cosine: $y=d+a \cos (b x-c)$
- Tangent: $y=d+a \tan (b x-c)$
- Cosecant: $y=d+a \csc (b x-c)$
- Secant: $y=d+a \sec (b x-c)$
- Cotangent: $y=d+a \cot (b x-c)$

The constants $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d , in each equation are used to determine:

- Amplitude = |a|
- Two equations for period:
- Period $=2 \pi / b \quad($ for $\sin , \cos , \mathrm{csc}, \mathrm{sec})$
- Period $=\pi / \mathrm{b}$ (for tan and cot)
- Vertical Shift = d
- Phase Shift (Horizontal Shift) $=c / b$

Helpful Reminders

- Using key points is a valuable strategy when drawing a graph.
- List a few key points near the appropriate side of the asymptote to determine how the graph behaves as it approaches the asymptote from the given side.
- The graphs of the trigonometric functions cosine and sine do not have vertical asymptotes.
- The graphs of the trigonometric functions tangent, cotangent, secant, and cosecant have vertical asymptotes.
- The formula to find the period of cosine, sine, secant, and cosecant functions differs from the formula used to find the period of tangent and cotangent functions.
- To graph transformations of a function, first graph the basic/parent function. Then graph each transformation in a series of graphs until you reach the final graph.

Basic Graphs

- Sine $(y=\sin x):$ amplitude $=1$, period $=2 \pi$

- Cosine $(y=\cos x):$ amplitude $=1$, period $=2 \pi$

- Tangent $(\mathrm{y}=\tan \mathrm{x})$: period $=\pi$, asymptotes: $\mathrm{x}=\{\ldots$,

$$
\left.-\frac{3 \pi}{2},-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \ldots\right\}
$$

- Cosecant ($\mathrm{y}=\boldsymbol{\operatorname { c s c }} \mathrm{x}$) : period $=2 \pi$, asymptotes: $\mathrm{x}=\{\ldots$, $-2 \pi,-\pi, 0, \pi, 2 \pi, \ldots\}$

- Secant $(y=\sec x):$ period $=2 \pi$, asymptotes: $x=\{\ldots$, $\left.-\frac{3 \pi}{2},-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \ldots\right\}$

- Cotangent $(y=\cot x)$: period $=\pi$, asymptotes: $x=\{\ldots$, $-2 \pi,-\pi, 0, \pi, 2 \pi, \ldots\}$

