16: Riemann Sums and the Definite Integral

Key Terms
Area Problem: Problem consisting in finding the area of a region of the xy-plane.
Partition of [a,b]: Finite and strictly increasing set of number such that the first point coincides with a and the last point coincides with b.
Uniform Partition: Partition in which consecutive points are equidistant from each other.
Sample Point: Point chosen between two consecutive points of a partition of [a, b].
Riemann Sum: Consider a function f continuous on $[a, b]$. Fill the region under the graph of f with rectangles. The corresponding Riemann sum is the some of the areas of the triangles above the b -axis and the negative of the areas of the rectangles below the b -axis.
Definite Integral of \mathbf{f} from a to b : Limit of the Riemann sum of f as the number of rectangles approaches infinity. Average of a Continuous Function f over $[a, b]$: Definite integral of from a to b over b-a.

Key Formulas

$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}^{*}\right) \Delta \mathrm{x}$, where $\Delta \mathrm{x}=\frac{\mathrm{b}-\mathrm{a}}{\mathrm{n}}$.
$L_{n}=\sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x$, where $\Delta x=\frac{b-a}{n}$.
$M_{n}=\sum_{i=1}^{n} f\left(\frac{x_{i-1}+x_{i}}{2}\right) \Delta x$, where $\Delta x=\frac{b-a}{n}$.

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x .
$$

Variables Used

$\mathrm{f}=$ generic name given to a function continuous on $[\mathrm{a}, \mathrm{b}]$.
$n=$ number rectangles, $n+1=$ number of points of the subdivision
$\mathrm{x}_{\mathrm{i}}=$ generic point of a partition of $[\mathrm{a}, \mathrm{b}]$.
$x_{i}^{*}=$ generic name of a sample point.
$S_{n}=$ Riemann sum; $L_{n}=$ Left Riemann sum.
$R_{n}=$ Right Riemann sum; $M_{n}=$ Middle Riemann sum.

Properties of the Definite I ntegral
$\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
$\int_{a}^{b}(f(x)-g(x)) d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x$
$\int_{a}^{b} \alpha f(x) d x=\alpha \int_{a}^{b} f(x) d x$, where α is a fixed number.
$\int_{a}^{b} \alpha \mathrm{dx}=\alpha(\mathrm{b}-\mathrm{a})$, where α is a constant.
$\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$, where $a \leq c \leq b$.
If $g(x) \leq f(x) \leq h(x)$ for all x in $[a, b]$, then
$\int_{a}^{b} g(x) d x \leq \int_{a}^{b} f(x) d x \leq \int_{a}^{b} h(x) d x$.
Tips on Computing Riemann Sums and Manipulating Definite Integrals

- Calculate the points of the subdivision.
- Select the sample points.
- Apply the appropriate formula.
- Memorize the properties of definite integrals.

Typical Problems Riemann Sums and The Definite Integral

Example1: Find the left, right and middle Riemann sums of $f(x)=\sqrt{x}-2,1 \leq x \leq 6$ by using $n=5$ rectangles.
Answer: The uniform partition of $[1,6]$ is $p=\{1,2,3,4,5,6\}$.
$L_{4}=-1+(\sqrt{2}-2)+(\sqrt{3}-2)+(\sqrt{4}-2)+(\sqrt{5}-2) \approx-1.62$
$\mathrm{R}_{4}=(\sqrt{2}-2)+(\sqrt{3}-2)+(\sqrt{4}-2)+(\sqrt{5}-2)+(\sqrt{6}-2) \approx-0.17$
$M_{4}=(\sqrt{1.5}-2)+(\sqrt{2.5}-2)+(\sqrt{3.5}-2)$

$$
\ldots+(\sqrt{4.5}-2)+(\sqrt{5.5}-2) \approx-0.86
$$

Example 2: If $\int_{2}^{3} f(x) d x=-5$ and $\int_{2}^{3} g(x) d x=1$,
find $\int_{2}^{3}[2 f(x)+3 g(x)] d x$.
Answer2:

$$
\begin{aligned}
\int_{2}^{3}[2 f(x)+3 g(x)] d x= & \int_{2}^{3} 2 f(x) d x+\int_{2}^{3} 3 g(x) d x \\
& =2 \int_{2}^{3} f(x) d x+3 \int_{2}^{3} g(x) d x \\
& =2(-5)+3(1) \\
& =-7
\end{aligned}
$$

How to Use This Cheat Sheet: These are the keys related to this topic. Try to read through it carefully twice then recite it out on a blank sheet of paper. Review it again before the exams.

