College Statistics - Core Concept Cheat Sheet

College Statistics - Core Concept Cheat Sheet 13: Discrete Probability Distributions	
Key Terms	Binomial Distribution Example
 Bernoulli trial: is an experiment whose outcome is random and can be either of two possible outcomes, "success" and "failure." Independent trials: the outcome from one trial has no effect on the outcome to be obtained from any other trial. Binomial Experiment: 1) predetermined n number of independent Bernoulli trials. 2) each trial result in only two outcomes: success and failure. 3) P(success) = p, is constant. Geometric distribution: probability of the number of times needed to do something until the first successful outcome. The number of Bernoulli trials which must be conducted before a trial results in a success. Geometric sequence: a sequence of numbers in which the (n+1)th number is a multiple of the nth number. P(X = n+1) is a multiple of P(X = n). 	 A random sample of 15 men is selected and the number who voted for Bush is recorded. Is this an example of a binomial experiment? n independent and identical trials: Trials: all men n=15 Two outcomes, Success and Failure: Success=voted for Bush Failure=did not vote for Bush Probability of success and failure: P(S)=0.4 P(F)=0.6 x is the number of successes: x= number of men who voted for Bush
Symbols X = Binomial or Geometric random variable	Yes, this is a binomial experiment
 x = number of successful trials p = probability of a success 1-p = probability of failure for a single trial μ = mean σ = standard deviation σ² = variance C = number of possible ways to have X = x k = number of trials needed for first success 	 Comparison of Geometric and Binomial The geometric distribution is the only discrete memoryless random distribution. It is a discrete analog of the exponential distribution. This means that the chance of getting a heads up on the 7th trial after failing the first 6 times is the same probability as getting a heads on any of the first 6 trials. The random process does not "remember" the number of
Distribution Properties	failures. In the <i>binomial distribution</i> we have fixed number of trials
Bernoulli distribution: 1. $\mu = px(1) + (1-p)x(0) = p$ 2. $\sigma^2 = pq$ Binomial distribution: 1. $P(X = x) = C_x^n p^x (1-p)^{n-x}$ n! $x(1-p)^{n-x}$	 and a variable number of successes In the <i>geometric distribution</i> we wait for a single success, but the number of trials is variable. <i>Negative Binomial distribution</i> is the sum of Geometric distribution. How many trials will be needed to have the first "x" number of successes. If <i>Y</i>1,, <i>Yr</i> are independent geometrically distributed variables with parameter <i>p</i>, then
$=\frac{n!}{x!(n-x)!}p^{x}(1-p)^{n-x},$	$Z = \sum' Y_m$
where $x = 0, 1, 2,, n, 0$	 m=1 Follows a negative binomial distribution with parameters r and p.
 3. σ²=npq=np(1-p) Geometric distribution: 	Calculating Binomial Probability
 Probability: If the probability of success on each trial is <i>p</i>, then the probability that <i>k</i> trials are needed to get one success is either P(X=k)=(1-p)^{k-1}p for k = 1, 2, 3,, Mean: E(X)= 1/p Variance : Var(X)=(1-p)/p² 	A student claims that he gets grades better or equal to A, 40% of the time. This quarter, he gets only one A out of 4 courses. How likely is it that he got one A, or worse, out of four courses given his claim? $P(x=0) = \frac{4!}{0!(4!)} (0.4)^0 (0.6)^4 = 1(1)(0.006) = 0.1296$
Geometric Distribution Example	$P(x=1) = \frac{4!}{1!(3!)} (0.4)^{1} (0.6)^{3} = 4(0.4)(0.216) = 0.3456$
An experiment consists of rolling a single die. The event of interest is rolling a 2; this event is called a success. Is this a geometric experiment?	P(x = 0) + P(x = 1) = 0.5616
 Rolling a 2 will represent a success, and rolling any other number will represent a failure. The probability of rolling a 2 on each roll is the same, p = 1/6. The observations are independent. A trial consists of rolling the die once. We roll the die until the first 2 appears. Since all of the requirements are satisfied, this experiment describes a geometric setting 	Calculating Geometric ProbabilityA child is trying to pick a yellow marble from a jar of 10 marbles with replacement and only 3 red marble in the jar. What is the probability of the girl succeeding in the 6th trial? $P=0.3$ $P(X=6)=0.3(1-0.3)^{6-1} = 0.050$

How to Use This Cheat Sheet: These are the keys related this topic. Try to read through it carefully twice then write it out on a blank sheet of paper. Review it again before the exams.