19: Plane Geometry

- Acute angle: a positive angle with a measure less than 90°.
- Adjacent angles: two angles that share a common side and a common vertex, but do not overlap.
- Alternate exterior angles: pairs of angles located outside the parallel lines on opposite sides of the transversal; they are congruent.
- Alternate interior angles: pairs of angles located between the parallel lines on opposite sides of the transversal; they are congruent.
- Chord: a line segment with both endpoints on the circle.
- Complementary angles: two angles whose sum is 90°.
- Corresponding angles: pairs of angles that are positioned the same at the intersection of two parallel lines and a transversal; they are congruent.
- Diameter: a chord that passes through the center of a circle.
- Equilateral triangle: a triangle with all sides congruent; also called equiangular.
- Isosceles trapezoid: a trapezoid with congruent legs.
- Isosceles triangle: a triangle with at least two sides congruent.
- Kite: a quadrilateral with no parallel sides and two pairs of adjacent sides that are congruent.
- Obtuse angle: an angle with a measure between 90° and 180°.
- Parallel lines: two or more lines in the same plane that do not intersect.
- Parallelogram: a quadrilateral with two pairs of parallel sides.
- Plane: a flat surface that extends indefinitely in all directions; represented by a parallelogram.
- Plane geometry: the science of measurement; the geometry dealing with figures in a plane.
- Polygon: a closed plane figure with three or more sides; each side is a line segment.
- Radius: any segment that connects a point on a circle to the center of the circle.
- Reflection: a transformation that flips a figure over a line.
- Right angle: an angle with a measure of exactly 90°.
- Rotation: a transformation that turns a figure around a fixed point.
- Scalene triangle: a triangle with no two congruent sides; all interior angles have different measures.
- Straight angle: an angle with a measure of exactly 180°.
- Supplementary angles: two angles whose sum is 180°.
- Tessellate: to cover a plane with identical shapes with no overlapping or gaps.
- Transformation: a change in position, shape, or size of a figure.
- Translation: a transformation that slides a figure to another location without change in size or orientation.
- Trapezoid: a quadrilateral with one pair of parallel sides.
- Vertical angles: two angles that are across from each other at the intersection of two lines; they are always congruent.

Example: Vertical Angles

Using the diagram to find h.

Solution: The expressions represent vertical angles so they are equivalent. Set them equal to each other and solve for h.

$$
\begin{aligned}
3 h-14 & =6-7 h \\
10 h & =20 \\
h & =2
\end{aligned}
$$

Example: Supplementary Angles

Use the diagram to find p.

Solution: The expressions represent the measures of supplementary angles. Set the sum of the expressions equal to 180° and solve for p.

$$
\begin{aligned}
4 p+9+2 p-3 & =180 \\
6 p+6 & =180 \\
6 p & =174 \\
p & =29
\end{aligned}
$$

Example: Duplicating Segments

Duplicate $\overline{A B}$.

To construct a segment equal to $\overline{A B}$, draw an arbitrary $\overline{M N}$ using a straightedge. Take the length of this segment longer than the length of $\overline{A B}$.
Open a compass and place its pointer at A and its pencil at B.

Keeping the compass with same openness, place its pointer at M and draw an arc. This arc intersects $\overline{M N}$ at K. Then $\overline{M K}$ is congruent to $\overline{A B}$.

How to Use This Cheat Sheet: These are the keys related this topic. Try to read through it carefully twice then rewrite it out on a blank sheet of paper. Review it again before the exams.

